Continuum theory of gene expression waves during vertebrate segmentation.

Autor: Jörg DJ; Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany., Morelli LG; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.; IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina., Soroldoni D; Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.; Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany., Oates AC; Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK., Jülicher F; Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany.; julicher@pks.mpg.de.
Jazyk: angličtina
Zdroj: New journal of physics [New J Phys] 2015 Sep; Vol. 17 (9), pp. 093042. Date of Electronic Publication: 2015 Sep 24.
DOI: 10.1088/1367-2630/17/9/093042
Abstrakt: The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.
Databáze: MEDLINE