Molecular Mapping of Oil Content and Fatty Acids Using Dense Genetic Maps in Groundnut ( Arachis hypogaea L.).

Autor: Shasidhar Y; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India.; Department of Genetics, Osmania UniversityHyderabad, India., Vishwakarma MK; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India., Pandey MK; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India., Janila P; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India., Variath MT; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India., Manohar SS; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India., Nigam SN; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India., Guo B; Crop Protection and Management Research Unit, Agricultural Research Service (USDA), TiftonGA, USA., Varshney RK; International Crops Research Institute for the Semi-Arid TropicsHyderabad, India.; School of Agriculture and Environment, University of Western Australia, CrawleyWA, Australia.
Jazyk: angličtina
Zdroj: Frontiers in plant science [Front Plant Sci] 2017 May 22; Vol. 8, pp. 794. Date of Electronic Publication: 2017 May 22 (Print Publication: 2017).
DOI: 10.3389/fpls.2017.00794
Abstrakt: Enhancing seed oil content with desirable fatty acid composition is one of the most important objectives of groundnut breeding programs globally. Genomics-assisted breeding facilitates combining multiple traits faster, however, requires linked markers. In this context, we have developed two different F 2 mapping populations, one for oil content (OC-population, ICGV 07368 × ICGV 06420) and another for fatty acid composition (FA-population, ICGV 06420 × SunOleic 95R). These two populations were phenotyped for respective traits and genotyped using Diversity Array Technology (DArT) and DArTseq genotyping platforms. Two genetic maps were developed with 854 (OC-population) and 1,435 (FA-population) marker loci with total map distance of 3,526 and 1,869 cM, respectively. Quantitative trait locus (QTL) analysis using genotyping and phenotyping data identified eight QTLs for oil content including two major QTLs, qOc-A10 and qOc-A02 , with 22.11 and 10.37% phenotypic variance explained (PVE), respectively. For seven different fatty acids, a total of 21 QTLs with 7.6-78.6% PVE were identified and 20 of these QTLs were of major effect. Two mutant alleles, ahFAD2B and ahFAD2A , also had 18.44 and 10.78% PVE for palmitic acid, in addition to oleic (33.8 and 17.4% PVE) and linoleic (41.0 and 19.5% PVE) acids. Furthermore, four QTL clusters harboring more than three QTLs for fatty acids were identified on the three LGs. The QTLs identified in this study could be further dissected for candidate gene discovery and development of diagnostic markers for breeding improved groundnut varieties with high oil content and desirable oil quality.
Databáze: MEDLINE