The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution.

Autor: Badouin H; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Gouzy J; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Grassa CJ; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada., Murat F; INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), Clermont Ferrand 63100, France., Staton SE; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada., Cottret L; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Lelandais-Brière C; Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of Paris-Saclay, 91405 Orsay, France.; Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France., Owens GL; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada., Carrère S; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Mayjonade B; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Legrand L; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Gill N; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada., Kane NC; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA., Bowers JE; Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, Georgia 30602, USA., Hubner S; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.; Department of Biotechnology, Tel-Hai Academic College, Upper Galilee 12210, Israel.; MIGAL - Galilee Research Institute, PO box 831, Kiryat Shmona 11016, Israel., Bellec A; INRA, Centre National de Ressources Génomiques Végétales, F-31326 Castanet-Tolosan, France., Bérard A; INRA, US 1279 EPGV/CEA/CNG, Evry, France., Bergès H; INRA, Centre National de Ressources Génomiques Végétales, F-31326 Castanet-Tolosan, France., Blanchet N; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Boniface MC; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Brunel D; INRA, US 1279 EPGV/CEA/CNG, Evry, France., Catrice O; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Chaidir N; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.; Dow AgroSciences LLC, Indianapolis, Indiana 46268, USA., Claudel C; Biogemma, 31700 Mondonville, France., Donnadieu C; INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France., Faraut T; INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France., Fievet G; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Helmstetter N; INRA, Centre National de Ressources Génomiques Végétales, F-31326 Castanet-Tolosan, France., King M; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.; DuPont Pioneer, Johnston, Iowa 50131, USA., Knapp SJ; Department of Plant Sciences, University of California, Davis, California 95616, USA., Lai Z; Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.; Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405, USA., Le Paslier MC; INRA, US 1279 EPGV/CEA/CNG, Evry, France., Lippi Y; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Lorenzon L; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Mandel JR; Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA., Marage G; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Marchand G; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Marquand E; INRA, US 1279 EPGV/CEA/CNG, Evry, France., Bret-Mestries E; TERRES INOVIA, UMR Arche INRA/ENSAT F-31320 Castanet-Tolosan, France., Morien E; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada., Nambeesan S; Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA., Nguyen T; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK., Pegot-Espagnet P; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Pouilly N; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Raftis F; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada., Sallet E; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Schiex T; MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France., Thomas J; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Vandecasteele C; INRA, GeT-PlaGe, Genotoul, Castanet-Tolosan, France., Varès D; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Vear F; INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), Clermont Ferrand 63100, France., Vautrin S; INRA, Centre National de Ressources Génomiques Végétales, F-31326 Castanet-Tolosan, France., Crespi M; Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of Paris-Saclay, 91405 Orsay, France.; Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France., Mangin B; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Burke JM; Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, Georgia 30602, USA., Salse J; INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), Clermont Ferrand 63100, France., Muños S; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Vincourt P; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France., Rieseberg LH; Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.; Department of Biology, Indiana University, Bloomington, Indiana 47405, USA., Langlade NB; LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
Jazyk: angličtina
Zdroj: Nature [Nature] 2017 Jun 01; Vol. 546 (7656), pp. 148-152. Date of Electronic Publication: 2017 May 22.
DOI: 10.1038/nature22380
Abstrakt: The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.
Databáze: MEDLINE