Autor: |
Faria SC; Departamento de Biologia Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil.; Present address: Instituto de Ciências Biológicas Universidade Federal do Rio Grande Rio Grande Brazil., Faleiros RO; Departamento de Biologia Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil., Brayner FA; Centro de Pesquisas Aggeu Magalhães Fiocruz Recife Brazil.; Laboratório de Imunopatologia Keizo AsamiLIKA/UFPE Recife Brazil., Alves LC; Centro de Pesquisas Aggeu Magalhães Fiocruz Recife Brazil.; Laboratório de Imunopatologia Keizo AsamiLIKA/UFPE Recife Brazil., Bianchini A; Instituto de Ciências Biológicas Universidade Federal do Rio Grande Rio Grande Brazil., Romero C; Centro Austral de Investigaciones Científicas CADIC-CONICET Ushuaia Argentina., Buranelli RC; Departamento de Biologia Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil., Mantelatto FL; Departamento de Biologia Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil., McNamara JC; Departamento de Biologia Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil.; Centro de Biologia Marinha Universidade de São Paulo São Sebastião Brazil. |
Jazyk: |
angličtina |
Zdroj: |
Ecology and evolution [Ecol Evol] 2017 Mar 31; Vol. 7 (9), pp. 3167-3176. Date of Electronic Publication: 2017 Mar 31 (Print Publication: 2017). |
DOI: |
10.1002/ece3.2741 |
Abstrakt: |
Thermal tolerance underpins most biogeographical patterns in ectothermic animals. Macroevolutionary patterns of thermal limits have been historically evaluated, but a role for the phylogenetic component in physiological variation has been neglected. Three marine zoogeographical provinces are recognized throughout the Neotropical region based on mean seawater temperature ( T m ): the Brazilian ( T m = 26 °C), Argentinian ( T m = 15 °C), and Magellanic ( T m = 9 °C) provinces. Microhabitat temperature (MHT) was measured, and the upper (UL 50 ) and lower (LL 50 ) critical thermal limits were established for 12 eubrachyuran crab species from intertidal zones within these three provinces. A molecular phylogenetic analysis was performed by maximum likelihood using the 16S mitochondrial gene, also considering other representative species to enable comparative evaluations. We tested for: (1) phylogenetic pattern of MHT, UL 50 , and LL 50 ; (2) effect of zoogeographical province on the evolution of both limits; and (3) evolutionary correlation between MHT and thermal limits. MHT and UL 50 showed strong phylogenetic signal at the species level while LL 50 was unrelated to phylogeny, suggesting a more plastic evolution. Province seems to have affected the evolution of thermal tolerance, and only UL 50 was dependent on MHT. UL 50 was similar between the two northern provinces compared to the southernmost while LL 50 differed markedly among provinces. Apparently, critical limits are subject to different environmental pressures and thus manifest unique evolutionary histories. An asymmetrical macroevolutionary scenario for eubrachyuran thermal tolerance seems likely, as the critical thermal limits are differentially inherited and environmentally driven. |
Databáze: |
MEDLINE |
Externí odkaz: |
|