The effects of inhaled aztreonam on the cystic fibrosis lung microbiome.

Autor: Heirali AA; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada., Workentine ML; Faculty of Veterinary Medicine, The University of Calgary, Calgary, AB, Canada., Acosta N; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada., Poonja A; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada., Storey DG; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada.; Department of Biological Sciences, The University of Calgary, Calgary, AB, Canada., Somayaji R; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada.; Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada., Rabin HR; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada.; Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada., Whelan FJ; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada., Surette MG; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada.; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada., Parkins MD; Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada. mdparkin@ucalgary.ca.; Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada. mdparkin@ucalgary.ca.
Jazyk: angličtina
Zdroj: Microbiome [Microbiome] 2017 May 05; Vol. 5 (1), pp. 51. Date of Electronic Publication: 2017 May 05.
DOI: 10.1186/s40168-017-0265-7
Abstrakt: Background: Aztreonam lysine for inhalation (AZLI) is an inhaled antibiotic used to treat chronic Pseudomonas aeruginosa infection in CF. AZLI improves lung function and quality of life, and reduces exacerbations-improvements attributed to its antipseudomonal activity. Given the extremely high aztreonam concentrations achieved in the lower airways by nebulization, we speculate this may extend its spectrum of activity to other organisms. As such, we sought to determine if AZLI affects the CF lung microbiome and whether community constituents can be used to predict treatment responsiveness.
Methods: Patients were included if they had chronic P. aeruginosa infection and repeated sputum samples collected before and after AZLI. Sputum DNA was extracted, and the V3-hypervariable region of the 16S ribosomal RNA (rRNA) gene amplified and sequenced.
Results: Twenty-four patients naïve to AZLI contributed 162 samples. The cohort had a median age of 37.1 years, and a  median FEV 1 of 44% predicted. Fourteen patients were a priori defined as responders for achieving ≥3% FEV 1 improvement following initiation. No significant changes in alpha diversity were noted following AZLI. Furthermore, beta diversity demonstrated clustering with respect to patients, but had no association with AZLI use. However, we did observe a decline in the relative abundance of several individual operational taxonomic units (OTUs) following AZLI initiation suggesting that specific sub-populations of organisms may be impacted. Patients with higher abundance of Staphylococcus and anaerobic organisms including Prevotella and Fusobacterium were less likely to respond to therapy.
Conclusions: Results from our study suggest potential alternate/additional mechanisms by which AZLI functions. Moreover, our study suggests that the CF microbiota may be used as a biomarker to predict patient responsiveness to therapy suggesting the microbiome may be harnessed for the personalization of therapies.
Databáze: MEDLINE