Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

Autor: Parker JF; U.S. Naval Research Laboratory, Surface Chemistry Branch, Code 6170, Washington, DC 20375, USA., Chervin CN; U.S. Naval Research Laboratory, Surface Chemistry Branch, Code 6170, Washington, DC 20375, USA., Pala IR; U.S. Naval Research Laboratory, Surface Chemistry Branch, Code 6170, Washington, DC 20375, USA., Machler M; EnZinc, Inc., 85 Lincoln Park, San Anselmo, CA 94960, USA., Burz MF; EnZinc, Inc., 85 Lincoln Park, San Anselmo, CA 94960, USA., Long JW; U.S. Naval Research Laboratory, Surface Chemistry Branch, Code 6170, Washington, DC 20375, USA., Rolison DR; U.S. Naval Research Laboratory, Surface Chemistry Branch, Code 6170, Washington, DC 20375, USA. rolison@nrl.navy.mil.
Jazyk: angličtina
Zdroj: Science (New York, N.Y.) [Science] 2017 Apr 28; Vol. 356 (6336), pp. 415-418.
DOI: 10.1126/science.aak9991
Abstrakt: The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles.
(Copyright © 2017, American Association for the Advancement of Science.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje