Novel non-cytotoxic, bioactive and biodegradable hybrid materials based on polyurethanes/TiO 2 for biomedical applications.

Autor: González-García DM; Departamento de Ingeniería Metalúrgica, ESIQIE, Instituto Politécnico Nacional, UPALM-Zacatenco, Col Lindavista, CP 07738 Mexico City, Mexico. Electronic address: dmgg_hp@hotmail.com., Téllez Jurado L; Departamento de Ingeniería Metalúrgica, ESIQIE, Instituto Politécnico Nacional, UPALM-Zacatenco, Col Lindavista, CP 07738 Mexico City, Mexico., Jiménez-Gallegos R; Departamento de Ingeniería Metalúrgica, ESIQIE, Instituto Politécnico Nacional, UPALM-Zacatenco, Col Lindavista, CP 07738 Mexico City, Mexico., Rodríguez-Lorenzo LM; Grupo de Biomateriales, ICTP-CSIC, Calle Juan de la Cierva 3, CP 28006 Madrid, Spain; CIBER-BBN, C. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
Jazyk: angličtina
Zdroj: Materials science & engineering. C, Materials for biological applications [Mater Sci Eng C Mater Biol Appl] 2017 Jun 01; Vol. 75, pp. 375-384. Date of Electronic Publication: 2017 Feb 16.
DOI: 10.1016/j.msec.2017.02.041
Abstrakt: Titanium compounds have demonstrated great interfacial properties with biological tissues whereas a wide variety of polyurethanes have also been successfully probed in medical applications. However, studies about hybrids based on polyurethanes/TiO 2 for medical applications are scarce. The aim of this work is to design novel biodegradable hybrid materials based on polyurethanes/TiO 2 (80% organic-20% inorganic) and to perform a preliminary study of the potential applications in bone regeneration. The hybrids have been prepared by a sol-gel reaction using titanium isopropoxide as precursor of the inorganic component and polyurethane as the organic one. A series of polyurethanes has been prepared using different polyesters glycol succinate as soft segment, and 1,6-diisocyanatohexane (HDI) and butanediol (BD) as linear hard segment. The spectroscopy techniques used allow to confirm the formation of the required polyurethanes by the identification of bands related to carboxylic groups (COOH), and the amine groups (NH), and also the TiOH bonds and the bonds related to the interconnected network between the inorganic and the organic components from hybrids. The results from SEM/EDS show a homogeneous distribution of the inorganic component into the organic matrix. The nontoxic character of the hybrid (H400) was probed using MG-63 cell line with over 90% of cell viability. Finally, the formation of a hydroxyapatite layer in the material surface after 21days of soaking in SBF shows the bioactive character.
(Copyright © 2017 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE