Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.

Autor: Betthauser JL, Hunt CL, Osborn LE, Kaliki RR, Thakor NV
Jazyk: angličtina
Zdroj: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2016 Aug; Vol. 2016, pp. 6373-6376.
DOI: 10.1109/EMBC.2016.7592186
Abstrakt: The fundamental objective in non-invasive myoelectric prosthesis control is to determine the user's intended movements from corresponding skin-surface recorded electromyographic (sEMG) activation signals as quickly and accurately as possible. Linear Discriminant Analysis (LDA) has emerged as the de facto standard for real-time movement classification due to its ease of use, calculation speed, and remarkable classification accuracy under controlled training conditions. However, performance of cluster-based methods like LDA for sEMG pattern recognition degrades significantly when real-world testing conditions do not resemble the trained conditions, limiting the utility of myoelectrically controlled prosthesis devices. We propose an enhanced classification method that is more robust to generic deviations from training conditions by constructing sparse representations of the input data dictionary comprised of sEMG time-frequency features. We apply our method in the context of upper-limb position changes to demonstrate pattern recognition robustness and improvement over LDA across discrete positions not explicitly trained. For single position training we report an accuracy improvement in untrained positions of 7.95%, p ≪ .001, in addition to significant accuracy improvements across all multiposition training conditions, p <; .001.
Databáze: MEDLINE