An aging-independent replicative lifespan in a symmetrically dividing eukaryote.

Autor: Spivey EC; Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States., Jones SK Jr; Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States., Rybarski JR; Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States., Saifuddin FA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States., Finkelstein IJ; Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States.; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States.
Jazyk: angličtina
Zdroj: ELife [Elife] 2017 Jan 31; Vol. 6. Date of Electronic Publication: 2017 Jan 31.
DOI: 10.7554/eLife.20340
Abstrakt: The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.
Databáze: MEDLINE