Multiscale Simulations of a Two-Pore Potassium Channel.

Autor: Masetti M; Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy., Berti C; Department of Molecular Biophysics and Physiology, Rush University Medical Center , Chicago 60612, Illinois, United States., Ocello R; Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy.; CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy., Di Martino GP; CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy., Recanatini M; Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy., Fiegna C; DEI, ARCES, University of Bologna and IUNET , via Venezia 260, 47521 Cesena, Italy., Cavalli A; Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy.; CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy.
Jazyk: angličtina
Zdroj: Journal of chemical theory and computation [J Chem Theory Comput] 2016 Dec 13; Vol. 12 (12), pp. 5681-5687. Date of Electronic Publication: 2016 Nov 18.
DOI: 10.1021/acs.jctc.6b00972
Abstrakt: Two-pore domain channels control cell excitability by modulating background potassium currents in response to several physicochemical stimuli. Thanks to the many crystal structures available, the TRAAK channel is one of the most studied, but little is known about its functional dynamics. Here, we explore TRAAK functionality complementing molecular dynamics with Brownian dynamics in a multiscale-modeling framework. We identify potential states of the channel that can prevent ion conduction, and we demonstrate that the suppression of currents is consistent with the presence of lipids inside the cavity.
Databáze: MEDLINE