Imaging the He2 quantum halo state using a free electron laser.

Autor: Zeller S; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany; zeller@atom.uni-frankfurt.de doerner@atom.uni-frankfurt.de., Kunitski M; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Voigtsberger J; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Kalinin A; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Schottelius A; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Schober C; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Waitz M; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Sann H; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Hartung A; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Bauer T; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Pitzer M; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Trinter F; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Goihl C; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Janke C; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Richter M; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Kastirke G; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Weller M; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Czasch A; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Kitzler M; Photonics Institute, Vienna University of Technology, 1040 Vienna, Austria., Braune M; Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany., Grisenti RE; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany.; GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany., Schöllkopf W; Department of Molecular Physics, Fritz-Haber-Institut, 14195 Berlin, Germany., Schmidt LP; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Schöffler MS; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Williams JB; Department of Physics, University of Nevada, Reno, NV 89557., Jahnke T; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany., Dörner R; Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany; zeller@atom.uni-frankfurt.de doerner@atom.uni-frankfurt.de.
Jazyk: angličtina
Zdroj: Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2016 Dec 20; Vol. 113 (51), pp. 14651-14655. Date of Electronic Publication: 2016 Dec 06.
DOI: 10.1073/pnas.1610688113
Abstrakt: Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He 2 's binding energy of [Formula: see text] neV, which is in agreement with most recent calculations.
Competing Interests: The authors declare no conflict of interest.
Databáze: MEDLINE