In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space.

Autor: Sanz B; Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain., Calatayud MP; Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain., De Biasi E; Centro Atómico Bariloche/CONICET, Bariloche, CP 8400, Argentina., Lima E Jr; Centro Atómico Bariloche/CONICET, Bariloche, CP 8400, Argentina., Mansilla MV; Centro Atómico Bariloche/CONICET, Bariloche, CP 8400, Argentina., Zysler RD; Centro Atómico Bariloche/CONICET, Bariloche, CP 8400, Argentina., Ibarra MR; Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain., Goya GF; Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.; Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2016 Dec 07; Vol. 6, pp. 38733. Date of Electronic Publication: 2016 Dec 07.
DOI: 10.1038/srep38733
Abstrakt: This work aims to demonstrate the need for in silico design via numerical simulation to produce optimal Fe 3 O 4 -based magnetic nanoparticles (MNPs) for magnetic hyperthermia by minimizing the impact of intracellular environments on heating efficiency. By including the relevant magnetic parameters, such as magnetic anisotropy and dipolar interactions, into a numerical model, the heating efficiency of as prepared colloids was preserved in the intracellular environment, providing the largest in vitro specific power absorption (SPA) values yet reported. Dipolar interactions due to intracellular agglomeration, which are included in the simulated SPA, were found to be the main cause of changes in the magnetic relaxation dynamics of MNPs under in vitro conditions. These results pave the way for the magnetism-based design of MNPs that can retain their heating efficiency in vivo, thereby improving the outcome of clinical hyperthermia experiments.
Databáze: MEDLINE