Forecasting Human African Trypanosomiasis Prevalences from Population Screening Data Using Continuous Time Models.

Autor: de Vries H; Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands., Wagelmans AP; Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands., Hasker E; Department of Public Health, Institute Of Tropical Medicine, Antwerp, Belgium., Lumbala C; Programme National de Lutte contre la Trypanosomiase Humaine Africain (PNLTHA), Kinshasa, Democratic Republic of Congo., Lutumba P; University of Kinshasa, Kinshasa, Democratic Republic of Congo., de Vlas SJ; Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands., Klundert JV; Institute of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands.
Jazyk: angličtina
Zdroj: PLoS computational biology [PLoS Comput Biol] 2016 Sep 22; Vol. 12 (9), pp. e1005103. Date of Electronic Publication: 2016 Sep 22 (Print Publication: 2016).
DOI: 10.1371/journal.pcbi.1005103
Abstrakt: To eliminate and eradicate gambiense human African trypanosomiasis (HAT), maximizing the effectiveness of active case finding is of key importance. The progression of the epidemic is largely influenced by the planning of these operations. This paper introduces and analyzes five models for predicting HAT prevalence in a given village based on past observed prevalence levels and past screening activities in that village. Based on the quality of prevalence level predictions in 143 villages in Kwamouth (DRC), and based on the theoretical foundation underlying the models, we consider variants of the Logistic Model-a model inspired by the SIS epidemic model-to be most suitable for predicting HAT prevalence levels. Furthermore, we demonstrate the applicability of this model to predict the effects of planning policies for screening operations. Our analysis yields an analytical expression for the screening frequency required to reach eradication (zero prevalence) and a simple approach for determining the frequency required to reach elimination within a given time frame (one case per 10000). Furthermore, the model predictions suggest that annual screening is only expected to lead to eradication if at least half of the cases are detected during the screening rounds. This paper extends knowledge on control strategies for HAT and serves as a basis for further modeling and optimization studies.
Competing Interests: The authors have declared that no competing interests exist.
Databáze: MEDLINE