[Glial cells are involved in iron accumulation and degeneration of dopamine neurons in Parkinson's disease].

Autor: Xu HM; Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China., Wang J; Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China., Song N; Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China., Jiang H; Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China., Xie JX; Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China. jxiaxie@public.qd.sd.cn.
Jazyk: čínština
Zdroj: Sheng li xue bao : [Acta physiologica Sinica] [Sheng Li Xue Bao] 2016 Aug 25; Vol. 68 (4), pp. 455-63.
Abstrakt: A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD. Until now, most researches on nigral iron deposition in PD are focusing on DA neurons, but in fact glial cells in the central nervous system also play an important role in the regulation of iron homeostasis. Therefore, this review describes the role of iron metabolism of glial cells in death of DA neurons in PD, which could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD.
Databáze: MEDLINE