Morphological and Functional Characterization of the Ciliary Pocket by Electron and Fluorescence Microscopy.

Autor: Ghossoub R; Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 13009, Marseille, France., Lindbæk L; Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark., Molla-Herman A; Department of Genetics and Developmental Biology, Institut Curie, Paris, France.; CNRS, UMR, Paris, France., Schmitt A; INSERM, U1016, Institut Cochin, 75014, Paris, France.; CNRS, UMR8104, 75014, Paris, France.; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France., Christensen ST; Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, OE, Denmark. stchristensen@bio.ku.dk., Benmerah A; INSERM, UMR-1163, Laboratory of Inherited Kidney Diseases, 75015, Paris, France. alexandre.benmerah@inserm.fr.; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institut, 75015, Paris, France. alexandre.benmerah@inserm.fr.
Jazyk: angličtina
Zdroj: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2016; Vol. 1454, pp. 35-51.
DOI: 10.1007/978-1-4939-3789-9_3
Abstrakt: In many vertebrate cell types, the proximal part of the primary cilium is positioned within an invagination of the plasma membrane known as the ciliary pocket. Recent evidence points to the conclusion that the ciliary pocket comprises a unique site for exocytosis and endocytosis of ciliary proteins, which regulates the spatiotemporal trafficking of receptors into and out of the cilium to control its sensory function. In this chapter, we provide methods based on electron microscopy, 3D reconstruction of fluorescence images as well as live cell imaging suitable for investigating processes associated with endocytosis at the ciliary pocket.
Databáze: MEDLINE