Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

Autor: Frausto-Solis J; Instituto Tecnológico de Ciudad Madero, Tecnológico Nacional de México, Avenida Sor Juana Inés de la Cruz s/n, Colonia los Mangos, 89440 Ciudad Madero, TAMPS, Mexico., Liñán-García E; Universidad Autónoma de Coahuila, Ciudad Universitaria, 25280 Arteaga, COAH, Mexico., Sánchez-Hernández JP; UPEMOR, Boulevard Cuauhnáhuac 566, Jiutepec, 62550 Mor México, CP, Mexico., González-Barbosa JJ; Instituto Tecnológico de Ciudad Madero, Tecnológico Nacional de México, Avenida Sor Juana Inés de la Cruz s/n, Colonia los Mangos, 89440 Ciudad Madero, TAMPS, Mexico., González-Flores C; Universidad Autónoma de Coahuila, Ciudad Universitaria, 25280 Arteaga, COAH, Mexico., Castilla-Valdez G; Instituto Tecnológico de Ciudad Madero, Tecnológico Nacional de México, Avenida Sor Juana Inés de la Cruz s/n, Colonia los Mangos, 89440 Ciudad Madero, TAMPS, Mexico.
Jazyk: angličtina
Zdroj: Advances in bioinformatics [Adv Bioinformatics] 2016; Vol. 2016, pp. 7357123. Date of Electronic Publication: 2016 Jun 20.
DOI: 10.1155/2016/7357123
Abstrakt: A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.
Databáze: MEDLINE