Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.

Autor: Strelow C; Institut für Physikalische Chemie, Universität Hamburg , 20148 Hamburg, Germany., Theuerholz TS; Institut für Theoretische Physik, Technische Universität Berlin , 10623 Berlin, Germany., Schmidtke C; Institut für Physikalische Chemie, Universität Hamburg , 20148 Hamburg, Germany., Richter M; Institut für Theoretische Physik, Technische Universität Berlin , 10623 Berlin, Germany., Merkl JP; Institut für Physikalische Chemie, Universität Hamburg , 20148 Hamburg, Germany.; The Hamburg Centre for Ultrafast Imaging , 22761 Hamburg, Germany., Kloust H; Institut für Physikalische Chemie, Universität Hamburg , 20148 Hamburg, Germany., Ye Z; Department of Applied Physics, Stanford University , Stanford, California 94305, United States., Weller H; Institut für Physikalische Chemie, Universität Hamburg , 20148 Hamburg, Germany.; The Hamburg Centre for Ultrafast Imaging , 22761 Hamburg, Germany.; Department of Chemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia., Heinz TF; Department of Applied Physics, Stanford University , Stanford, California 94305, United States.; SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States., Knorr A; Institut für Theoretische Physik, Technische Universität Berlin , 10623 Berlin, Germany., Lange H; Institut für Physikalische Chemie, Universität Hamburg , 20148 Hamburg, Germany.; The Hamburg Centre for Ultrafast Imaging , 22761 Hamburg, Germany.
Jazyk: angličtina
Zdroj: Nano letters [Nano Lett] 2016 Aug 10; Vol. 16 (8), pp. 4811-8. Date of Electronic Publication: 2016 Jul 05.
DOI: 10.1021/acs.nanolett.6b00982
Abstrakt: Hybrid nanosystems composed of excitonic and plasmonic constituents can have different properties than the sum of of the two constituents, due to the exciton-plasmon interaction. Here, we report on a flexible model system based on colloidal nanoparticles that can form hybrid combinations by self-organization. The system allows us to tune the interparticle distance and to combine nanoparticles of different sizes and thus enables a systematic investigation of the exciton-plasmon coupling by a combination of optical spectroscopy and quantum-optical theory. We experimentally observe a strong influence of the energy difference between exciton and plasmon, as well as an interplay of nanoparticle size and distance on the coupling. We develop a full quantum theory for the luminescence dynamics and discuss the experimental results in terms of the Purcell effect. As the theory describes excitation as well as coherent and incoherent emission, we also consider possible quantum optical effects. We find a good agreement of the observed and the calculated luminescence dynamics induced by the Purcell effect. This also suggests that the self-organized hybrid system can be used as platform to address quantum optical effects.
Databáze: MEDLINE