Differential Binding Activity of TGF-β Family Proteins to Select TGF-β Receptors.

Autor: Khalil AM; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California., Dotimas H; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California., Kahn J; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California., Lamerdin JE; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California., Hayes DB; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California., Gupta P; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California., Franti M; Boehringer Ingelheim Pharmaceuticals, Inc. (A.M.K., J.K., D.B.H., P.G., M.F.), Ridgefield, Connecticut; and DiscoverX Corporation (H.D., J.E.L.), Fremont, California michael.franti@boehringer-ingelheim.com.
Jazyk: angličtina
Zdroj: The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 2016 Sep; Vol. 358 (3), pp. 423-30. Date of Electronic Publication: 2016 Jun 23.
DOI: 10.1124/jpet.116.232322
Abstrakt: Growth differentiation factor-11 (GDF11) and myostatin (MSTN) are highly related transforming growth factor-β (TGF-β) ligands with 89% amino acid sequence homology. They have different biologic activities and diverse tissue distribution patterns. However, the activities of these ligands are indistinguishable in in vitro assays. SMAD2/3 signaling has been identified as the canonical pathway for GDF11 and MSTN, However, it remains unclear which receptor heterodimer and which antagonists preferentially mediate and regulate signaling. In this study, we investigated the initiation and regulation of GDF11 and MSTN signaling at the receptor level using a novel receptor dimerization detection technology. We used the dimerization platform to link early receptor binding events to intracellular downstream signaling. This approach was instrumental in revealing differential receptor binding activity within the TGF-β family. We verified the ActR2b/ALK5 heterodimer as the predominant receptor for GDF11- and MSTN-induced SMAD2/3 signaling. We also showed ALK7 specifically mediates activin-B signaling. We verified follistatin as a potent antagonist to neutralize both SMAD2/3 signaling and receptor dimerization. More remarkably, we showed that the two related antagonists, growth and differentiation factor-associated serum protein (GASP)-1 and GASP2, differentially regulate GDF11 (and MSTN) signaling. GASP1 blocks both receptor dimerization and downstream signaling. However, GASP2 blocks only downstream signaling without interference from receptor dimerization. Our data strongly suggest that physical binding of GDF11 (and MSTN) to both ActR2b and ALK5 receptors is required for initiation of signaling.
(Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.)
Databáze: MEDLINE