Transport properties and electroresistance of a manganite based heterostructure: role of the manganite-manganite interface.

Autor: Gadani K; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Dhruv D; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Joshi Z; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Boricha H; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Rathod KN; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Keshvani MJ; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Shah NA; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com., Solanki PS; Department of Physics, Saurashtra University, Rajkot - 360 005, India. piyush.physics@gmail.com.
Jazyk: angličtina
Zdroj: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2016 Jun 29; Vol. 18 (26), pp. 17740-9.
DOI: 10.1039/c6cp02053d
Abstrakt: In this paper, we report the results of the investigations on the transport properties performed across the manganite-manganite interface in the LaMnO3-δ/La0.7Ca0.3MnO3/LaAlO3 (LMO/LCMO/LAO) heterostructure. The bilayered heterostructure was synthesized by a low cost and simple chemical solution deposition (CSD) method by employing the acetate precursor route. The same LMO/LCMO/LAO heterostructure was also grown using the dry metal oxide chemical vapor deposition (CVD) method and the results of transport characterization have been compared on the basis of wet and dry chemical methods used. XRD Φ-scan measurements were carried out to verify the structural quality and crystallographic orientations of LMO and LCMO manganite layers, for both wet and dry chemical method grown heterostructures. For wet and dry chemical methods, the temperature dependent resistance of the LMO/LCMO interface suggests the metallic nature. The asymmetric I-V curves collected at different temperatures show normal diode characteristics which get transformed to backward diode characteristics at high temperatures under high applied voltages at Vtr for both the methods. The values of Vtr are strongly dependent on the chemical method used. I-V data have been fitted using the Simmons model at different temperatures and discussed in terms of the spin-flip scattering mechanism for both wet and dry chemical method grown heterostructures. The electric field dependent electroresistance (ER) behavior of the presently studied LMO/LCMO manganite-manganite interface, grown using wet and dry chemical methods, has been understood on the basis of complex mechanisms including charge injection, formation of the depletion region, the tunneling effect, thermal processes and junction breakdown and their dependence on the applied electric field, field polarity and temperature studied.
Databáze: MEDLINE