Autor: |
Shahid M; Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan. shahidzeeshan@gmail.com., Dumat C; Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès-Toulouse II, 5 Allée Antonio Machado, 31058, Toulouse Cedex 9, France., Khalid S; Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan., Niazi NK; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.; Southern Cross GeoScience, Southern Cross University, Lismore, 2480, NSW, Australia., Antunes PMC; AquaTox Testing & Consulting Inc., Guelph, ON, Canada. |
Abstrakt: |
This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil-plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid. |