Autor: |
Bender RR; Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany., Muth A; Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany., Schneider IC; Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany., Friedel T; Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany., Hartmann J; Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany., Plückthun A; Department of Biochemistry, University of Zurich, Zurich, Switzerland., Maisner A; Institute for Virology (BMFZ), Philipps-University Marburg, Marburg, Germany., Buchholz CJ; Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany. |
Abstrakt: |
Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs. |