Autor: |
Thorat ND; Centre for Interdisciplinary Research, D.Y. Patil University , Kolhapur-416006, India.; Department of Physics & Energy, University of Limerick , Limerick V94 T9PX, Ireland.; Materials & Surface Science Institute, University of Limerick , Limerick V94 T9PX, Ireland., Bohara RA; Centre for Interdisciplinary Research, D.Y. Patil University , Kolhapur-416006, India., Malgras V; World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan., Tofail SA; Department of Physics & Energy, University of Limerick , Limerick V94 T9PX, Ireland.; Materials & Surface Science Institute, University of Limerick , Limerick V94 T9PX, Ireland., Ahamad T; Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia., Alshehri SM; Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia., Wu KC; Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.; Division of Medical Engineering Research, National Health Research Institutes , 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan., Yamauchi Y; World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. |
Abstrakt: |
Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs. |