Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands.

Autor: St Laurent B; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland brandyce.stlaurent@nih.gov., Cooke M; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Krishnankutty SM; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Asih P; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Mueller JD; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Kahindi S; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Ayoma E; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Oriango RM; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Thumloup J; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Drakeley C; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Cox J; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Collins FH; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Lobo NF; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland., Stevenson JC; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Centre for Global Health Research, Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Western Triangle Research Center, Montana State University, Conrad, Montana; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Jazyk: angličtina
Zdroj: The American journal of tropical medicine and hygiene [Am J Trop Med Hyg] 2016 Feb; Vol. 94 (2), pp. 327-35. Date of Electronic Publication: 2016 Jan 19.
DOI: 10.4269/ajtmh.15-0562
Abstrakt: The success of mosquito-based malaria control is dependent upon susceptible bionomic traits in local malaria vectors. It is crucial to have accurate and reliable methods to determine mosquito species composition in areas subject to malaria. An unexpectedly diverse set of Anopheles species was collected in the western Kenyan highlands, including unidentified and potentially new species carrying the malaria parasite Plasmodium falciparum. This study identified 2,340 anopheline specimens using both ribosomal DNA internal transcribed spacer region 2 and mitochondrial DNA cytochrome oxidase subunit 1 loci. Seventeen distinct sequence groups were identified. Of these, only eight could be molecularly identified through comparison to published and voucher sequences. Of the unidentified species, four were found to carry P. falciparum by circumsporozoite enzyme-linked immunosorbent assay and polymerase chain reaction, the most abundant of which had infection rates comparable to a primary vector in the area, Anopheles funestus. High-quality adult specimens of these unidentified species could not be matched to museum voucher specimens or conclusively identified using multiple keys, suggesting that they may have not been previously described. These unidentified vectors were captured outdoors. Diverse and unknown species have been incriminated in malaria transmission in the western Kenya highlands using molecular identification of unusual morphological variants of field specimens. This study demonstrates the value of using molecular methods to compliment vector identifications and highlights the need for accurate characterization of mosquito species and their associated behaviors for effective malaria control.
(© The American Society of Tropical Medicine and Hygiene.)
Databáze: MEDLINE