Autor: |
Tsai D, John E, Chari T, Yuste R, Shepard K |
Jazyk: |
angličtina |
Zdroj: |
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2015; Vol. 2015, pp. 7510-3. |
DOI: |
10.1109/EMBC.2015.7320129 |
Abstrakt: |
We present a system for large-scale electrophysiological recording and stimulation of neural tissue with a planar topology. The recording system has 65,536 electrodes arranged in a 256 × 256 grid, with 25.5 μm pitch, and covering an area approximately 42.6 mm(2). The recording chain has 8.66 μV rms input-referred noise over a 100 ~ 10k Hz bandwidth while providing up to 66 dB of voltage gain. When recording from all electrodes in the array, it is capable of 10-kHz sampling per electrode. All electrodes can also perform patterned electrical microstimulation. The system produces ~ 1 GB/s of data when recording from the full array. To handle, store, and perform nearly real-time analyses of this large data stream, we developed a framework based around Xilinx FPGAs, Intel x86 CPUs and the NVIDIA Streaming Multiprocessors to interface with the electrode array. |
Databáze: |
MEDLINE |
Externí odkaz: |
|