Voxel seed coherent source analysis on transient global amnesia patients.

Autor: Muthuraman M, Dohring J, Nahrwold M, Mideksa KG, Chaitanya CV, Margraf N, Raethjen J, Deuschl G, Bartsch T
Jazyk: angličtina
Zdroj: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2015 Aug; Vol. 2015, pp. 638-41.
DOI: 10.1109/EMBC.2015.7318443
Abstrakt: Transient global amnesia (TGA) is a rare neurological disorder with a sudden, temporary episode of memory loss which usually occurs in old age. The episodic loss of memory becomes normal after a stipulated time of approximately 24 hours. The precise pathology is not yet completely understood. Moreover, there is no proper neuroimaging method to assess this condition. In this study, the EEG was measured at two time points one with the occurrence of the episode (acute) and the second time point after the patient returns to the normal memory condition (follow-up). The aim of the study was to look at the pathological network involved during the acute phase and the follow up phase in these patients for the five frequency bands, namely, delta, theta, alpha, beta, and gamma. The method used for the source analyses was a beamforming approach called dynamic imaging of coherent sources in the frequency domain. The seed voxel was the lesion area taken from the anatomical MRI of each patient. The cortical and subcortical network comprised of the caudate and cerebellum in case of the delta band frequency. Two temporal sources in case of the theta band. Temporal, medial frontal, parietal, putamen, and thalamus sources were found in case of the alpha band. Prefrontal, parietal, and thalamus sources were found in case of the beta band. Temporal and thalamus in case of the gamma band frequency. All these sources were involved in the acute phase. Moreover, in the follow-up phase the motor area, in all frequency bands except gamma band, was additionally active followed by parietal and occipital regions in alpha and gamma frequencies. The differences involved in the network of sources between the two phases gives us better understanding of this neurological disorder.
Databáze: MEDLINE