Size-Induced Depression of First-Order Transition Lines and Entropy Jump in Extremely Layered Nanocrystalline Vortex Matter.

Autor: Dolz MI; Departamento de Física, Universidad Nacional de San Luis and CONICET, 5700 San Luis, Argentina., Fasano Y; Low Temperatures Division, Centro Atómico Bariloche, CNEA, 8400 Bariloche, Argentina., Cejas Bolecek NR; Low Temperatures Division, Centro Atómico Bariloche, CNEA, 8400 Bariloche, Argentina., Pastoriza H; Low Temperatures Division, Centro Atómico Bariloche, CNEA, 8400 Bariloche, Argentina., Mosser V; Itron France, ITC, F-92448 Issy-les-Moulineaux, France., Li M; Kamerlingh Onnes Laboratorium, Rijksuniversiteit Leiden, 2300 RA Leiden, Netherlands., Konczykowski M; Laboratoire des Solides Irradiées, CNRS UMR 7642 & CEA-DSM-IRAMIS, Ecole Polytechnique, F-91128 Palaiseau cedex, France.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2015 Sep 25; Vol. 115 (13), pp. 137003. Date of Electronic Publication: 2015 Sep 25.
DOI: 10.1103/PhysRevLett.115.137003
Abstrakt: We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
Databáze: MEDLINE