Physical and functional interactions between a glioma cation channel and integrin-β1 require α-actinin.
Autor: | Rooj AK; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama., Liu Z; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama., McNicholas CM; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama., Fuller CM; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama. |
---|---|
Jazyk: | angličtina |
Zdroj: | American journal of physiology. Cell physiology [Am J Physiol Cell Physiol] 2015 Sep 01; Vol. 309 (5), pp. C308-19. Date of Electronic Publication: 2015 Jun 24. |
DOI: | 10.1152/ajpcell.00036.2015 |
Abstrakt: | Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na(+) channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration. (Copyright © 2015 the American Physiological Society.) |
Databáze: | MEDLINE |
Externí odkaz: |
Pro tento záznam nejsou dostupné žádné jednotky.