Universal freezing of quantum correlations within the geometric approach.

Autor: Cianciaruso M; 1] School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom [2] Dipartimento di Fisica 'E. R. Caianiello', Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (SA), Italy [3] INFN Sezione di Napoli, Gruppo collegato di Salerno, Italy., Bromley TR; School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom., Roga W; Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II 132, Fiscia (SA), I-84084, Italy., Lo Franco R; 1] School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom [2] Dipartimento di Fisica e Chimica, Università di Palermo, via Archirafi 36, Palermo, I-90123 Italy [3] Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, São Paulo, 13560-970 Brazil., Adesso G; School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2015 Jun 08; Vol. 5, pp. 10177. Date of Electronic Publication: 2015 Jun 08.
DOI: 10.1038/srep10177
Abstrakt: Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies.
Databáze: MEDLINE