Myeloperoxidase is increased in human cerebral aneurysms and increases formation and rupture of cerebral aneurysms in mice.
Autor: | Chu Y; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Wilson K; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Gu H; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Wegman-Points L; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Dooley SA; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Pierce GL; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Cheng G; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Pena Silva RA; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Heistad DD; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.)., Hasan D; From the Departments of Neurosurgery (Y.C., K.W., H.G., S.A.D., D.H.), Internal Medicine (Y.C., K.W., D.D.H.), Anesthesiology (H.G.), and Health and Human Physiology (L.W.-P., G.L.P.), University of Iowa Carver College of Medicine; Department of Internal Medicine, University of Alabama School of Medicine, Birmingham (G.C.); and Departments of Pharmacology and Neurosurgery, Medical School, Universidad de los Andes, Bogota, Colombia (R.A.P.S.). david-hasan@uiowa.edu. |
---|---|
Jazyk: | angličtina |
Zdroj: | Stroke [Stroke] 2015 Jun; Vol. 46 (6), pp. 1651-6. Date of Electronic Publication: 2015 Apr 28. |
DOI: | 10.1161/STROKEAHA.114.008589 |
Abstrakt: | Background and Purpose: Cerebral aneurysm (CA) affects 3% of the population and is associated with hemodynamic stress and inflammation. Myeloperoxidase, a major oxidative enzyme associated with inflammation, is increased in patients with CA, but whether myeloperoxidase contributes to CA is not known. We tested the hypotheses that myeloperoxidase is increased within human CA and is critical for formation and rupture of CA in mice. Methods: Blood was drawn from the lumen of CAs and femoral arteries of 25 patients who underwent endovascular coiling of CA, and plasma myeloperoxidase concentrations were measured with ELISA. Effects of endogenous myeloperoxidase on CA formation and rupture were studied in myeloperoxidase knockout mice and wild-type (WT) mice using an angiotensin II-elastase induction model of CA. In addition, effects of myeloperoxidase on inflammatory gene expression in endothelial cells were analyzed. Results: Plasma concentrations of myeloperoxidase were 2.7-fold higher within CA than in femoral arterial blood in patients with CA. myeloperoxidase-positive cells were increased in aneurysm tissue compared with superficial temporal artery of patients with CA. Incidence of aneurysms and subarachnoid hemorrhage was significantly lower in myeloperoxidase knockout than in WT mice. In cerebral arteries, proinflammatory molecules, including tumor necrosis factor-α, cyclooxygenase-2 (COX2), chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (C motif) ligand (XCL1), matrix metalloproteinase (MMP) 8, cluster of differentiation 68 (CD68), and matrix metalloproteinase 13, and leukocytes were increased, and α-smooth muscle actin was decreased, in WT but not in myeloperoxidase knockout mice after induction of CA. Myeloperoxidase per se increased expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in endothelial cells. Conclusions: These findings suggest that myeloperoxidase may contribute importantly to formation and rupture of CA. (© 2015 American Heart Association, Inc.) |
Databáze: | MEDLINE |
Externí odkaz: |