Quantifying the degradation of TNT and RDX in a saline environment with and without UV-exposure.

Autor: Sisco E; National Institute of Standards and Technology, Materials Measurement Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899. Electronic address: edward.sisco@nist.gov., Najarro M; National Institute of Standards and Technology, Materials Measurement Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899. Electronic address: marcela.najarro@nist.gov., Bridge C; Defense Forensic Science Center, Gillem Enclave, Forest Park, GA 30297; University of Central Florida/National Center for Forensic Science, P.O. Box 162367 Orlando, FL 32816, USA. Electronic address: cbridge@ucf.edu., Aranda R 4th; Defense Forensic Science Center, Gillem Enclave, Forest Park, GA 30297. Electronic address: roman.aranda3.ctr@mail.mil.
Jazyk: angličtina
Zdroj: Forensic science international [Forensic Sci Int] 2015 Jun; Vol. 251, pp. 124-31. Date of Electronic Publication: 2015 Apr 14.
DOI: 10.1016/j.forsciint.2015.04.002
Abstrakt: Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1].
(Published by Elsevier Ireland Ltd.)
Databáze: MEDLINE