Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems.

Autor: Wade LJ; Charles Sturt University, Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia., Bartolome V; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, 1301, Philippines., Mauleon R; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, 1301, Philippines., Vasant VD; Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India., Prabakar SM; Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India., Chelliah M; Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India., Kameoka E; Graduate School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya, 464-8601, Japan., Nagendra K; Barwale Foundation, Barwale Chambers, Street No.10, Himayat nagar, Hyderabad, 500029, India., Reddy KR; Barwale Foundation, Barwale Chambers, Street No.10, Himayat nagar, Hyderabad, 500029, India., Varma CM; Barwale Foundation, Barwale Chambers, Street No.10, Himayat nagar, Hyderabad, 500029, India., Patil KG; Barwale Foundation, Barwale Chambers, Street No.10, Himayat nagar, Hyderabad, 500029, India., Shrestha R; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom., Al-Shugeairy Z; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom., Al-Ogaidi F; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom., Munasinghe M; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom., Gowda V; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, 1301, Philippines., Semon M; Africa Rice Center, c/o IITA, PMB 5320 Oyo Road, Ibadan, Nigeria., Suralta RR; Philippine Rice Research Institute, Maligaya, Science City of Muñoz, 3119, Nueva Ecija, Philippines., Shenoy V; Barwale Foundation, Barwale Chambers, Street No.10, Himayat nagar, Hyderabad, 500029, India., Vadez V; International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), Patancheru, Telangana, 502324, India., Serraj R; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, 1301, Philippines., Shashidhar HE; College of Agriculture, University of Agricultural Sciences-Gandhi Krishi Vignana Kendra (GKVK), Bangalore, 560065, India., Yamauchi A; Graduate School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya, 464-8601, Japan., Babu RC; Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India., Price A; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom., McNally KL; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, 1301, Philippines., Henry A; International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, 1301, Philippines.
Jazyk: angličtina
Zdroj: PloS one [PLoS One] 2015 Apr 24; Vol. 10 (4), pp. e0124127. Date of Electronic Publication: 2015 Apr 24 (Print Publication: 2015).
DOI: 10.1371/journal.pone.0124127
Abstrakt: The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7-40.7 Mb) and on chromosome 8 (20.3-21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions.
Databáze: MEDLINE