Relative Importance of the Arcuate and Anteroventral Periventricular Kisspeptin Neurons in Control of Puberty and Reproductive Function in Female Rats.

Autor: Hu MH; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Li XF; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., McCausland B; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Li SY; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Gresham R; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Kinsey-Jones JS; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Gardiner JV; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Sam AH; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Bloom SR; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Poston L; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Lightman SL; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., Murphy KG; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom., O'Byrne KT; Division of Women's Health (M.H.H., X.F.L., B.M., S.Y.L., R.G., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; Section of Investigative Medicine (J.S.K.-J., J.V.G., A.H.S., S.R.B., K.G.M.), Division of Diabetes, Endocrinology, and Metabolism, Imperial College London, London W12 0NN, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom.
Jazyk: angličtina
Zdroj: Endocrinology [Endocrinology] 2015 Jul; Vol. 156 (7), pp. 2619-31. Date of Electronic Publication: 2015 Apr 15.
DOI: 10.1210/en.2014-1655
Abstrakt: Kisspeptin plays a critical role in pubertal timing and reproductive function. In rodents, kisspeptin perikarya within the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei are thought to be involved in LH pulse and surge generation, respectively. Using bilateral microinjections of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC or AVPV of female rats at postnatal day 10, we investigated the relative importance of these two kisspeptin populations in the control of pubertal timing, estrous cyclicity, and LH surge and pulse generation. A 37% knockdown of kisspeptin in the AVPV resulted in a significant delay in vaginal opening and first vaginal estrous, abnormal estrous cyclicity, and reduction in the occurrence of spontaneous LH surges, although these retained normal amplitude. This AVPV knockdown had no effect on LH pulse frequency, measured after ovariectomy. A 32% reduction of kisspeptin in the ARC had no effect on the onset of puberty but resulted in abnormal estrous cyclicity and decreased LH pulse frequency. Additionally, the knockdown of kisspeptin in the ARC decreased the amplitude but not the incidence of LH surges. These results might suggest that the role of AVPV kisspeptin in the control of pubertal timing is particularly sensitive to perturbation. In accordance with our previous studies, ARC kisspeptin signaling was critical for normal pulsatile LH secretion in female rats. Despite the widely reported role of AVPV kisspeptin neurons in LH surge generation, this study suggests that both AVPV and ARC populations are essential for normal LH surges and estrous cyclicity.
Databáze: MEDLINE