Defect-Tolerant Aligned Dipoles within Two-Dimensional Plastic Lattices.

Autor: Thomas JC; †Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States., Schwartz JJ; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; §Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, United States., Hohman JN; †Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States., Claridge SA; †Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; ⊥Department of Chemistry and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47904, United States., Auluck HS; †Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States., Serino AC; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; ∥Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States., Spokoyny AM; †Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; ¶Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States., Tran G; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; #Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States., Kelly KF; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; ▽Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States., Mirkin CA; ¶Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States., Gilles J; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; #Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States.; ○Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182, United States., Osher SJ; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; #Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, United States., Weiss PS; †Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.; ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.; ∥Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Jazyk: angličtina
Zdroj: ACS nano [ACS Nano] 2015 May 26; Vol. 9 (5), pp. 4734-42. Date of Electronic Publication: 2015 Apr 17.
DOI: 10.1021/acsnano.5b01329
Abstrakt: Carboranethiol molecules self-assemble into upright molecular monolayers on Au{111} with aligned dipoles in two dimensions. The positions and offsets of each molecule's geometric apex and local dipole moment are measured and correlated with sub-Ångström precision. Juxtaposing simultaneously acquired images, we observe monodirectional offsets between the molecular apexes and dipole extrema. We determine dipole orientations using efficient new image analysis techniques and find aligned dipoles to be highly defect tolerant, crossing molecular domain boundaries and substrate step edges. The alignment observed, consistent with Monte Carlo simulations, forms through favorable intermolecular dipole-dipole interactions.
Databáze: MEDLINE