P2-quinazolinones and bis-macrocycles as new templates for next-generation hepatitis C virus NS3/4a protease inhibitors: discovery of MK-2748 and MK-6325.
Autor: | Rudd MT; Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA (USA). michael_rudd@merck.com., Butcher JW, Nguyen KT, McIntyre CJ, Romano JJ, Gilbert KF, Bush KJ, Liverton NJ, Holloway MK, Harper S, Ferrara M, DiFilippo M, Summa V, Swestock J, Fritzen J, Carroll SS, Burlein C, DiMuzio JM, Gates A, Graham DJ, Huang Q, McClain S, McHale C, Stahlhut MW, Black S, Chase R, Soriano A, Fandozzi CM, Taylor A, Trainor N, Olsen DB, Coleman PJ, Ludmerer SW, McCauley JA |
---|---|
Jazyk: | angličtina |
Zdroj: | ChemMedChem [ChemMedChem] 2015 Apr; Vol. 10 (4), pp. 727-35. Date of Electronic Publication: 2015 Mar 10. |
DOI: | 10.1002/cmdc.201402558 |
Abstrakt: | With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK-5172. Quinazolinone-containing macrocycles were identified as promising leads, and optimization for superior cross-genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK-2748. Additional investigation of a series of bis-macrocycles containing a fused 18- and 15-membered ring system were also optimized for the same properties, leading to the discovery of MK-6325. Both compounds display the broad genotype and mutant potency necessary for clinical development as next-generation HCV NS3/4a protease inhibitors. (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.) |
Databáze: | MEDLINE |
Externí odkaz: |