[A multivariate nonlinear model for quantitative analysis in laser-induced breakdown spectroscopy].

Autor: Chen XL, Fu HB, Wang JG, Ni ZB, He WG, Xu J, Rao Rui-zhong, Dong RZ
Jazyk: čínština
Zdroj: Guang pu xue yu guang pu fen xi = Guang pu [Guang Pu Xue Yu Guang Pu Fen Xi] 2014 Nov; Vol. 34 (11), pp. 3100-3.
Abstrakt: Most quantitative models used in laser-induced breakdown spectroscopy (LIBS) are based on the hypothesis that laser-induced plasma approaches the state of local thermal equilibrium (LTE). However, the local equilibrium is possible only at a specific time segment during the evolution. As the populations of each energy level does not follow Boltzmann distribution in non-LTE condition, those quantitative models using single spectral line would be inaccurate. A multivariate nonlinear model, in which the LTE is not required, was proposed in this article to reduce the signal fluctuation and improve the accuracy of quantitative analysis. This multivariate nonlinear model was compared with the internal calibration model which is based on the LTE condition. The content of Mn in steel samples was determined by using the two models, respectively. A minor error and a minor relative standard deviation (RSD) were observed in multivariate nonlinear model. This result demonstrates that multivariate nonlinear model can improve measurement accuracy and repeatability.
Databáze: MEDLINE