Autor: |
Aftanas LI, Brak IV, Gilinskaia OM, Pavlov SV, Reva NV |
Jazyk: |
ruština |
Zdroj: |
Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova [Ross Fiziol Zh Im I M Sechenova] 2014 Jan; Vol. 100 (1), pp. 112-27. |
Abstrakt: |
Stress reactivity of the motivational system of defense can be assessed with the aid the cardiac defense response (CDR) - the reaction of the cardiovascular system to unexpected aversive unconditioned stimulus. The main objective of the study was revealing putative contribution of oscillatory systems of the brain into central pathogenic mechanisms of enhanced blood pressure (BP) stress-reactivity in naive patients with arterial hypertension (AH) of the 1st-2nd degrees (n = 17) and healthy control (n = 19) subjects. Using dynamic registration "beat-by-beat" arterial pressure, and oscillatory activity related EEG (64 channels) is estimated using the event-related synchronization/desynchronization (ERD/ERS). Along with abnormally high blood pressure in patients with hypertension background set significantly lower concentrations of serotonin blood platelets and increased tonic activation of the left hemisphere, reflected in the asymmetric reduction of delta- (2-4 Hz) and theta-1 (4-6 Hz) power in the central and parietal cortex in the hemisphere CDR of the patients are characterized by hyperactivity both short- and long-latency components of blood pressure. According to the dynamic analysis of the concomitant EEG, long-latency BP components may be accounted by, among other mechanisms, weakening of the descending ("top-down") inhibitory control, hypothetically implemented with the high-frequency EEG alpha (10-12 Hz) oscillations from the medial central-parietal cortex of both hemispheres of the brain. |
Databáze: |
MEDLINE |
Externí odkaz: |
|