Abstrakt: |
We have examined the interrelationships among CaO2, blood flow, oxygen binding by hemoglobin, and VO2 in cardiac patients with and without chronic cardiac decompensation. We have quantified the role that decreased oxygen-binding to hemoglobin may play in maintaining VO2 in the presence of low systemic blood flow rates. The volume rate of oxygen delivery to tissues was expressed as the OFIa, the product of CO2 and blood flow. OFIa varied from 738 to 262 ml/min/m2, whereas VO2 varied from 170 to 117 ml/min/m2. Thus, in the patients with lowest OFIa (63% below the highest OFIa), VO2 was only down 19%. VO2 was maintained because the extraction of oxygen rose from about 20% to 50% in close association with the decrease in OFIa. Oxygen binding to hemoglobin was lower in patients with the lowest OFIa--and therefore, at in vivo conditions of pH, PCO2, and temperature, P50 in vivo was higher. The resulting facilitation of oxygen release at the PO2 of tissue capillaries could explain about one third of the observed increment in oxygen extraction in patients with low OFIa. An alternative interpretation is that a high P50 in vivo minimizes the reduction in PVO2 needed to maintain VO2 when increased proportional extraction of O2 compensates for decreased OFIa. |