Autor: |
de Castro AP; Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Laboratórios Inova, Campo Grande, Brazil., Fernandes Gda R; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteomicas e Bioquimicas, Universidade Católica de Brasília Brasilia, Brazil., Franco OL; Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Laboratórios Inova, Campo Grande, Brazil ; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteomicas e Bioquimicas, Universidade Católica de Brasília Brasilia, Brazil. |
Abstrakt: |
In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have been completely lost. As an alternative, metagenomics has been used as a reliable approach to reveal the prospective reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured microbial community that inhabits a number of environments. In this context, this review will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics approach from the soil environment. Biotechnology prospects are also discussed, opening new frontiers for antibiotic development. |