Reversible electric-field control of magnetization at oxide interfaces.

Autor: Cuellar FA; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2]., Liu YH; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA., Salafranca J; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA., Nemes N; GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain., Iborra E; GMME Departamento de Tecnologia Electronica, ETSIT, Universidad Politecnica de Madrid, 28040 Madrid, Spain., Sanchez-Santolino G; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense Madrid, Sor Juana Inés de la Cruz, 3, ES-28049 Madrid, Spain., Varela M; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA., Garcia Hernandez M; 1] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense Madrid, Sor Juana Inés de la Cruz, 3, ES-28049 Madrid, Spain [2] Instituto de Ciencia de Materiales de Madrid, 28049 Madrid, Spain., Freeland JW; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA., Zhernenkov M; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA., Fitzsimmons MR; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA., Okamoto S; Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA., Pennycook SJ; Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA., Bibes M; 1] Unité Mixte de Physique CNRS/Thales, 1 avenue Augustin Fresnel, Campus de l'Ecole Polytechnique, 91767 Palaiseau, France [2] Université Paris-Sud, 91905 Orsay, France., Barthélémy A; 1] Unité Mixte de Physique CNRS/Thales, 1 avenue Augustin Fresnel, Campus de l'Ecole Polytechnique, 91767 Palaiseau, France [2] Université Paris-Sud, 91905 Orsay, France., te Velthuis SG; Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA., Sefrioui Z; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense Madrid, Sor Juana Inés de la Cruz, 3, ES-28049 Madrid, Spain., Leon C; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense Madrid, Sor Juana Inés de la Cruz, 3, ES-28049 Madrid, Spain., Santamaria J; 1] GFMC, Departamento Fisica Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense Madrid, Sor Juana Inés de la Cruz, 3, ES-28049 Madrid, Spain.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2014 Jun 23; Vol. 5, pp. 4215. Date of Electronic Publication: 2014 Jun 23.
DOI: 10.1038/ncomms5215
Abstrakt: Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.
Databáze: MEDLINE