Autor: |
Muschik CA; ICFO-Institut de Ciències Fotòniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain., Moulieras S; ICFO-Institut de Ciències Fotòniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain., Bachtold A; ICFO-Institut de Ciències Fotòniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain., Koppens FH; ICFO-Institut de Ciències Fotòniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain., Lewenstein M; ICFO-Institut de Ciències Fotòniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Reçerca i Estudis Avançats, Lluis Companys 23, 08010 Barcelona, Spain., Chang DE; ICFO-Institut de Ciències Fotòniques, Avenida Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain. |
Abstrakt: |
Position measurements at the quantum level are vital for many applications but also challenging. Typically, methods based on optical phase shifts are used, but these methods are often weak and difficult to apply to many materials. An important example is graphene, which is an excellent mechanical resonator due to its small mass and an outstanding platform for nanotechnologies, but it is largely transparent. Here, we present a novel detection scheme based upon the strong, dispersive vacuum interactions between a graphene sheet and a quantum emitter. In particular, the mechanical displacement causes strong changes in the vacuum-induced shifts of the transition frequency of the emitter, which can be read out via optical fields. We show that this enables strong quantum squeezing of the graphene position on time scales that are short compared to the mechanical period. |