A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats.

Autor: Nigro M; Laboratório de Bioenergética (M.N., A.T.S., C.S.B., L.A.K., L.d.M.), Instituto de Bioquímica Médica, Laboratório de Radiobiologia Molecular (R.S.F.) and Laboratório de Fisiologia Endócrina Doris Rosenthal (R.A.N.L., D.P.C.), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil., Santos AT, Barthem CS, Louzada RA, Fortunato RS, Ketzer LA, Carvalho DP, de Meis L
Jazyk: angličtina
Zdroj: Endocrinology [Endocrinology] 2014 Aug; Vol. 155 (8), pp. 2881-91. Date of Electronic Publication: 2014 Jun 10.
DOI: 10.1210/en.2013-1385
Abstrakt: Menopause is associated with increased visceral adiposity and disrupted glucose homeostasis, but the underlying molecular mechanisms related to these metabolic changes are still elusive. Brown adipose tissue (BAT) plays a key role in energy expenditure that may be regulated by sexual steroids, and alterations in glucose homeostasis could precede increased weight gain after ovariectomy. Thus, the aim of this work was to evaluate the metabolic pathways in both the BAT and the liver that may be disrupted early after ovariectomy. Ovariectomized (OVX) rats had increased food efficiency as early as 12 days after ovariectomy, which could not be explained by differences in feces content. Analysis of isolated BAT mitochondria function revealed no differences in citrate synthase activity, uncoupling protein 1 expression, oxygen consumption, ATP synthesis, or heat production in OVX rats. The addition of GDP and BSA to inhibit uncoupling protein 1 decreased oxygen consumption in BAT mitochondria equally in both groups. Liver analysis revealed increased triglyceride content accompanied by decreased levels of phosphorylated AMP-activated protein kinase and phosphorylated acetyl-CoA carboxylase in OVX animals. The elevated expression of gluconeogenic enzymes in OVX and OVX + estradiol rats was not associated with alterations in glucose tolerance test or in serum insulin but was coincident with higher glucose disposal during the pyruvate tolerance test. Although estradiol treatment prevented the ovariectomy-induced increase in body weight and hepatic triglyceride and cholesterol accumulation, it was not able to prevent increased gluconeogenesis. In conclusion, the disrupted liver glucose homeostasis after ovariectomy is neither caused by estradiol deficiency nor is related to increased body mass.
Databáze: MEDLINE