From genome to phenome-Simple inborn errors of metabolism as complex traits.
Autor: | Touw CM; Section of Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands. Electronic address: n.touw@umcg.nl., Derks TG; Section of Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands., Bakker BM; Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands., Groen AK; Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands., Smit GP; Section of Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands., Reijngoud DJ; Research Laboratory of Paediatrics, Beatrix Children's Hospital, University Medical Centre of Groningen, Groningen, The Netherlands; Center for Liver, Digestive and Metabolic Diseases, University Medical Centre of Groningen, Groningen, The Netherlands; Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University of Groningen, University Medical Centre of Groningen, Groningen, The Netherlands. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biochimica et biophysica acta [Biochim Biophys Acta] 2014 Oct; Vol. 1842 (10), pp. 2021-2029. Date of Electronic Publication: 2014 Jun 03. |
DOI: | 10.1016/j.bbadis.2014.05.032 |
Abstrakt: | Sporadically, patients with a proven defect in either mFAO or OXPHOS are described presenting with a metabolic profile and clinical phenotype expressing concurrent defects in both pathways. Biochemical linkages between both processes are tight. Therefore, it is striking that concurrent dysfunction of both systems occurs so infrequent. In this review, the linkages between OXPHOS and mFAO and the hypothesized processes responsible for concurrent problems in both systems are reviewed, both from the point of view of primary biochemical connections and secondary cellular responses, i.e. signaling pathways constituting nutrient-sensing networks. We propose that affected signaling pathways may play an important role in the phenomenon of concurrent defects. Recent data indicate that interference in the affected signaling pathways may resolve the pathological phenotype even though the primary enzyme deficiency persists. This offers new (unexpected) prospects for treatment of these inborn errors of metabolism. This article is part of a Special Issue entitled: From Genome to Function. (Copyright © 2014 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |