The role of surface energy in guanosine nucleotide alignment: an intriguing scenario.

Autor: Tone CM; Physics Department, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; IPCF-CNR UOS Cosenza c/o Phys. Dep. University of Calabria, 87036 Arcavacata di Rende, CS, Italy. Electronic address: caterina.tone@fis.unical.it., De Santo MP; Physics Department, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; IPCF-CNR UOS Cosenza c/o Phys. Dep. University of Calabria, 87036 Arcavacata di Rende, CS, Italy. Electronic address: maria.desanto@fis.unical.it., Ciuchi F; IPCF-CNR UOS Cosenza c/o Phys. Dep. University of Calabria, 87036 Arcavacata di Rende, CS, Italy. Electronic address: federica.ciuchi@cnr.it.
Jazyk: angličtina
Zdroj: Colloids and surfaces. B, Biointerfaces [Colloids Surf B Biointerfaces] 2014 Jul 01; Vol. 119, pp. 99-105. Date of Electronic Publication: 2014 Apr 21.
DOI: 10.1016/j.colsurfb.2014.04.004
Abstrakt: In this paper we report how the confining surfaces and the ionic effects of different concentration of guanosine solution can be used to vary the alignment of liquid crystal phases of guanosine nucleotides. Liquid crystal phases of guanosine 5'-monophosphate ammonium salt and guanosine 5'-monophosphate free acid in pure water, with and without silver sulphate, were studied by polarized optical microscope. A periodic modulation of the texture was observed. This modulation depends on both on the concentration and on the presence of silver ions in the liquid crystal phase. We demonstrate that, according to the surface energy of the alignment layers, it is possible to homeotropically align the guanosine chromonic phase without applying any external magnetic field. Finally, we report the formation of spherical, vesicle-like guanosine 5'-monophosphate aggregates, when the solution was confined between two hydrophobic surfaces containing exposed Si groups.
(Copyright © 2014 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE