Coherent properties of single rare-earth spin qubits.

Autor: Siyushev P; 1] 3. Physikalisches Institut, Universität Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart D-70569, Germany [2]., Xia K; 1] 3. Physikalisches Institut, Universität Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart D-70569, Germany [2]., Reuter R; 3. Physikalisches Institut, Universität Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart D-70569, Germany., Jamali M; 3. Physikalisches Institut, Universität Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart D-70569, Germany., Zhao N; Beijing Computational Science Research Center, Beijing 100084, China., Yang N; Institute of Applied Physics and Computational Mathematics, PO Box 8009 (28), Beijing 100088, China., Duan C; Hefei National Laboratory for Physics Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026, China., Kukharchyk N; Ruhr-Universität Bochum, Universitätsstraß e 150 Gebäude NB, Bochum D-44780, Germany., Wieck AD; Ruhr-Universität Bochum, Universitätsstraß e 150 Gebäude NB, Bochum D-44780, Germany., Kolesov R; 3. Physikalisches Institut, Universität Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart D-70569, Germany., Wrachtrup J; 3. Physikalisches Institut, Universität Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE), Pfaffenwaldring 57, Stuttgart D-70569, Germany.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2014 May 14; Vol. 5, pp. 3895. Date of Electronic Publication: 2014 May 14.
DOI: 10.1038/ncomms4895
Abstrakt: Rare-earth-doped crystals are excellent hardware for quantum storage of photons. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here we present experimental results on high-fidelity optical initialization, efficient coherent manipulation and optical readout of a single-electron spin of Ce(3+) ion in a yttrium aluminium garnet crystal. Under dynamic decoupling, spin coherence lifetime reaches T2 = 2 ms and is almost limited by the measured spin-lattice relaxation time T1 = 4.5 ms. Strong hyperfine coupling to aluminium nuclear spins suggests that cerium electron spins can be exploited as an interface between photons and long-lived nuclear spin memory. Combined with high brightness of Ce(3+) emission and a possibility of creating photonic circuits out of the host material, this makes cerium spins an interesting option for integrated quantum photonics.
Databáze: MEDLINE