Autor: |
Pillay P; Department of Biomedical and Clinical Technology, Durban University of Technology, KwaZulu Natal, South Africa; School of Nursing and Public Health, University of KwaZulu Natal, KwaZulu Natal, South Africa; Research Unit, Sorlandet Hospital HF, Kristiansand, Norway; University of Agder, Kristiansand, Norway; Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Infectious Diseases, Norwegian Centre for Imported and Tropical Diseases, Ulleval, University Hospital, Oslo, Norway., Taylor M, Zulu SG, Gundersen SG, Verweij JJ, Hoekstra P, Brienen EA, Kleppa E, Kjetland EF, van Lieshout L |
Abstrakt: |
Schistosoma haematobium eggs and Schistosoma DNA levels were measured in urine samples from 708 girls recruited from 18 randomly sampled primary schools in South Africa. Microscopic analysis of two 10-mL urine subsamples collected on three consecutive days confirmed high day-to-day variation; 103 (14.5%) girls had positive results at all six examinations, and at least one positive sample was seen in 225 (31.8%) girls. Schistosoma-specific DNA, which was measured in a 200-μL urine subsample by using real-time polymerase chain reaction, was detected in 180 (25.4%) cases, and levels of DNA corresponded significantly with average urine egg excretion. In concordance with microscopic results, polymerase chain reaction results were significantly associated with history of gynecologic symptoms and confirmed highly focal distribution of urogenital schistosomiasis. Parasite-specific DNA detection has a sensitivity comparable to single urine microscopy and could be used as a standardized high-throughput procedure to assess distribution of urogenital schistosomiasis in relatively large study populations by using small sample volumes. |