High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry.

Autor: Rosenthal M; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow 119991, Russian Federation., Doblas D; Institut de Sciences des Matériaux de Mulhouse, CNRS UMR7361, CNRS, 15 rue Jean Starcky, Mulhouse 68057, France., Hernandez JJ; Institut de Sciences des Matériaux de Mulhouse, CNRS UMR7361, CNRS, 15 rue Jean Starcky, Mulhouse 68057, France., Odarchenko YI; Institut de Sciences des Matériaux de Mulhouse, CNRS UMR7361, CNRS, 15 rue Jean Starcky, Mulhouse 68057, France., Burghammer M; European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble 38043, France., Di Cola E; European Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble 38043, France., Spitzer D; Institut Franco-Allemand de Recherches de Saint-Louis, Laboratoire des Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes, UMR3208, ISL/CNRS, 5 Rue du Général Cassagnou, Saint-Louis 68301, France., Antipov AE; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow 119991, Russian Federation., Aldoshin LS; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow 119991, Russian Federation., Ivanov DA; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow 119991, Russian Federation.
Jazyk: angličtina
Zdroj: Journal of synchrotron radiation [J Synchrotron Radiat] 2014 Jan; Vol. 21 (Pt 1), pp. 223-8. Date of Electronic Publication: 2013 Nov 02.
DOI: 10.1107/S1600577513024892
Abstrakt: A microelectromechanical-systems-based calorimeter designed for use on a synchrotron nano-focused X-ray beamline is described. This instrument allows quantitative DC and AC calorimetric measurements over a broad range of heating/cooling rates (≤100000 K s(-1)) and temperature modulation frequencies (≤1 kHz). The calorimeter was used for high-resolution thermal imaging of nanogram-sized samples subjected to X-ray-induced heating. For a 46 ng indium particle, the measured temperature rise reaches ∼0.2 K, and is directly correlated to the X-ray absorption. Thermal imaging can be useful for studies of heterogeneous materials exhibiting physical and/or chemical transformations. Moreover, the technique can be extended to three-dimensional thermal nanotomography.
Databáze: MEDLINE