The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation.

Autor: Rippel RA; Department of Surgery and Cancer, Imperial College London, London, UK., Rolls AE, Riga CV, Hamady M, Cheshire NJ, Bicknell CD
Jazyk: angličtina
Zdroj: European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery [Eur J Cardiothorac Surg] 2014 May; Vol. 45 (5), pp. 836-41. Date of Electronic Publication: 2013 Dec 01.
DOI: 10.1093/ejcts/ezt524
Abstrakt: Objectives: The use of transcatheter aortic valve implantation (TAVI) is rapidly increasing with advances in technology and improved clinical outcomes. Adoption of robotic catheter technologies could have a role in TAVI, in different stages of the procedure, to improve endovascular tool manipulation and potentially reduce the risk of cerebral embolization. The aim was to determine whether there are advantages in using a robotic catheter for TAVI in the initial stages of the procedure; aortic arch navigation and valve crossing.
Methods: A silicone in vitro model of the aorta and stenotic aortic valve was developed. Fifteen operators performed the fluoroscopy-guided simulation using manual and robotic techniques. Performance metrics-time and vessel wall contact (wall-hits) were compared (Wilcoxon's signed-rank test).
Results: Overall, the time taken for robotic arch navigation was increased (3.09 min interquartile range (1.24-6.29) vs 1.21 min (0.15-4.42); P = 0.03). Contact with the aortic arch wall, however, significantly decreased using the robotic catheter: wall-hits 1 (0-5) vs 6 (2-22), P < 0.01. For valve crossing, there was no significant increase in time and wall-hits when using the robotic technology.
Conclusions: Use of robotic catheter technology is feasible in the initial stages of TAVI. Although it takes longer, robotic navigation reduces contact with the aortic arch wall, potentially reducing the embolic risk during endovascular manipulation. Using a robotic catheter is possible without increasing the number of wall-hits during valve crossing. This may provide a stable platform for wire positioning in the ventricle. With improvements in technology, perhaps allowing valve deployment, the stability and accuracy of the robotic arm may further improve performance.
Databáze: MEDLINE