Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells.

Autor: Guo C; Luohe Medical College, 148 Daxue Road, Luohe, 462002, Henan, People's Republic of China, guospring@126.com., Yuan L, Wang JG, Wang F, Yang XK, Zhang FH, Song JL, Ma XY, Cheng Q, Song GH
Jazyk: angličtina
Zdroj: Inflammation [Inflammation] 2014 Apr; Vol. 37 (2), pp. 621-31.
DOI: 10.1007/s10753-013-9778-9
Abstrakt: Bone degradation is a serious complication of chronic inflammatory diseases such as septic arthritis, osteomyelitis, and infected orthopedic implant failure. Up to date, effective therapeutic treatments for bacteria-caused bone destruction are limited. In our previous study, we found that LPS promoted osteoclast differentiation and activity through activation of mitogen-activated protein kinases (MAPKs) pathway such as c-Jun N-terminal kinases (JNK) and extracellular signal regulated kinase (ERK1/2). The current study was to evaluate the mechanism of LPS on the apoptosis and osteoblast differentiation in MC3T3-E1 cells. MC3T3-E1 osteoblasts were non-treated, treated with LPS. After treatment, the cell viability, the activity of alkaline phosphatase (ALP) and caspase-3 were measured. The expressions of osteoblast-specific genes and Bax, Bcl-2, and caspase-3 were determined by real-time quantitative polymerase chain reaction (qPCR). Protein levels of Bax, Bcl-2, caspase-3, and phosphorylation of MAPKs were measured using Western blotting assays. The MAPK signaling pathway was blocked by pretreatment with JNK inhibitor SP600125. LPS treatment induced a significant decrease in cell metabolism, viability, and ALP activity in MC3T3-E1 cells. LPS also significantly decreased mRNA expressions of osteoblast-related genes in MC3T3-E1 cells. On the other hand, LPS significantly upregulated mRNA expressions and protein levels of Bax and caspase-3 as well as activation of caspase-3, whereas decreased Bcl-2 expression in MC3T3-E1 cells. Furthermore, LPS significantly promoted MAPK pathway including the phosphorylation of JNK and the phosphorylation of ERK1/2; moreover, pretreatment with JNK inhibitor not only attenuated both of phosphorylation-JNK and ERK1/2 enhanced by LPS in MC3T3-E1 cells, but also reversed the downregulated expressions of osteoblast-specific genes including ALP and BSP induced by LPS. In conclusion, LPS could induce osteoblast apoptosis and inhibit osteoblast differentiation via activation of JNK pathway.
Databáze: MEDLINE