Identification of putative quantitative trait loci associated with a flavonoid related to resistance to cabbage seedpod weevil (Ceutorhynchus obstrictus) in canola derived from an intergeneric cross, Sinapis alba × Brassica napus.

Autor: Lee RW; Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON, N1G 2W1, Canada, rlee@uoguelph.ca., Malchev IT, Rajcan I, Kott LS
Jazyk: angličtina
Zdroj: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2013 Nov 15, pp. . Date of Electronic Publication: 2013 Nov 15.
DOI: 10.1007/s00122-013-2228-0
Abstrakt: Key Message: Kaempferol 3- O -sinapoyl-sophoroside 7- O -glucoside was putatively identified as the major component of a characteristic HPLC peak previously correlated with the reduction of cabbage seedpod weevil larval infestation in a novel canola genotype. The cabbage seedpod weevil (Ceutorhynchus obstrictus [Marsham]) (CSPW) is a serious pest of brassicaceous oilseed crops such as canola in both Europe and more recently in North America. At present, the only control strategy against CSPW is the application of insecticides. As an alternative more environmentally-friendly control strategy, we developed novel canola germplasm resistant to weevil attack through introgression of Sinapis alba DNA into Brassica napus by making the wide cross followed by embryo rescue and backcrossing to the B. napus parent. We have previously characterized resistant canola lines by metabolic profiling and were able to correlate reduction of larval infestation to the presence of a characteristic HPLC peak. In this study, we have putatively identified the major component in the peak using mass spectrometry as kaempferol 3-O-sinapoyl-sophoroside 7-O-glucoside (KSSG). We have also identified quantitative trait loci (QTL) associated with this HPLC peak in a mapping population consisting of more than 200 individual doubled haploid (DH) lines derived from a cross between CSW428 (the resistant parent) and SC030686 (the susceptible parent). This QTL accounted for approximately 9.5 % of the phenotypic variation in KSSG content. The observation that only one QTL was identified as surpassing the LOD threshold of 3.0 suggests that both parents may possess the positive alleles for other QTL that have not been detected in our study. This finding also indicates a complex regulatory mechanism for KSSG levels and provides an appropriate explanation for the large transgressive segregation observed in the DH lines of the QTL mapping population.
Databáze: MEDLINE