Autor: |
da Luz JM; Departamento de Microbiologia, Universidade Federal de Viçosa , Viçosa, MG , Brasil., Nunes MD, Paes SA, Torres DP, de Cássia Soares da Silva M, Kasuya MC |
Jazyk: |
angličtina |
Zdroj: |
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] [Braz J Microbiol] 2012 Oct; Vol. 43 (4), pp. 1508-15. Date of Electronic Publication: 2012 Jun 01. |
DOI: |
10.1590/S1517-838220120004000035 |
Abstrakt: |
The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. |
Databáze: |
MEDLINE |
Externí odkaz: |
|